笔记:Deep Learning
update: 2018-03-05
最近在用tensorflow做深度学习方面的工作,总有「书到用时方恨少」之感。虽然研究生时上过两门相关课程,但均是浅尝辙止。这回和冬博士讨教,他推荐了Deep Learning这本书,于是打算认真研读下。
思路安排如下:因为已经有数学和机器学习基础,所以跳过第一部份,如果遇到困难,再返查细节。重点阅读第二部份,笔记,如有习题,尽量做习题,并且用tensorflow示意。通览第三部份,笔记,有个大致印象即可。预计耗时3个月。
目录
1 Introduction
Part I: Applied Math and Machine Learning Basics
2 Linear Algebra
3 Probability and Information Theory
4 Numerical Computation
5 Machine Learning Basics
Part II: Modern Practical Deep Networks
6 Deep Feedforward Networks
7 Regularization for Deep Learning
8 Optimization for Training Deep Models
9 Convolutional Networks
10 Sequence Modeling: Recurrent and Recursive Nets
11 Practical Methodology
12 Applications
Part III: Deep Learning Research
13 Linear Factor Models
14 Autoencoders
15 Representation Learning
16 Structured Probabilistic Models for Deep Learning
17 Monte Carlo Methods
18 Confronting the Partition Function
19 Approximate Inference
20 Deep Generative Models
后记
结果花了近六个月,断断续续看完第二部份,主要都是深度学习的基础知识。第三部份内容太专,我现在用不上,打算暂且搁置,将来需要再回来补上。
此书内容清晰明了,确实是本入门好书。另外,结合Standford的课程CS231n: Convolutional Neural Networks for Visual Recognition一起看,食用效果更佳。